Properties of Pure Substance

By: Yidnekachew Messele

Pure substance

- A substance that has a fixed chemical composition throughout is called a pure substance.

```
Water
Nitrogen
Air
Helium
Helium
```

Carbon dioxide

- Pure substance may exist in different phases, but the chemical compositions is the same.
- water made up of two atoms of hydrogen and one atom oxygen. It will have the same composition when in ice, liquid and vapor forms.

Phase-change processes of pure substances

- Consider the piston-cylinder device containing liquid water $20^{\circ} \mathrm{C}$ at and 1 atm .

- Under these conditions, water exists in the liquid phase, and it is called a compressed liquid, or a sub cooled liquid.
- As the temperature rises, the liquid water expands slightly, and so its specific volume increases.

- At this point, the entire cylinder is filled with vapor that is on the borderline of

STATE 4

 the liquid phase.- Any heat loss from this vapor will cause some of the vapor to condense (phase change from vapor to liquid).
$P=1 \mathrm{~atm}$ $T=100^{\circ} \mathrm{C}$

伤 ${ }^{\text {Heat }}$

- The vapor that is about to condense is called a saturated vapor.

- At a given pressure, the temperature at which a pure substance changes phase is called the saturation temperature $\mathrm{T}_{\text {sat. }}$
- At a given temperature, the pressure at which a pure substance changes phase is called the saturation pressure $\mathrm{P}_{\text {sat }}$.
- At a pressure of $101.325 \mathrm{kPa}, \mathrm{T}_{\text {sat }}$ is $99.97^{\circ} \mathrm{C}$.
- At a temperature of $99.97^{\circ} \mathrm{C}, \mathrm{P}_{\text {sat }}$ is 101.325 kPa.
- The amount of energy absorbed or released during a phase-change process is called the latent heat.
- The amount of energy absorbed during vaporization is called the latent heat of vaporization and it is equivalent to the energy released during condensation.
- The amount of energy absorbed during melting is called the latent heat of fusion and it is equivalent to the amount of energy released during freezing.
- During a phase-change process, pressure and temperature are obviously dependent properties $T_{\text {rat }}=f\left(\mathrm{P}_{\text {rat }}\right)$

The T-V diagram

- Experimental result tells us, as the pressure is increased further, the saturation line of the process will continue to get shorter and it will become a point.
- This point is called the critical point of the substance and it may be defined as the point at which the saturated liquid saturated vapor states are identical.
- At pressures above the critical pressure, there is not a distinct phase-change process.
- We can never tell when the change has occurred.

The P-T diagram

Thermodynamic tables

- Thermodynamic properties of substance are usually given in tabular form to facilitate calculation.
- Among them saturated, superheated steam and compressed liquid are the most frequently used properties.

Saturated liquid-vapor mixture

- During a vaporization process, a substance exists as part liquid and part vapor.
- To analyze this mixture properly, we need to know the proportions of the liquid and vapor phases in the mixture.
- Quality (x) as the ratio of the mass of vapor to the total mass of the mixture:

$$
x=\frac{m_{\text {vapor }}}{m_{\text {total }}} \quad m_{\text {total }}=m_{\text {liquid }}+m_{\text {vapor }}=m_{f}+m_{g}
$$

Its value is between 0 and 1

$$
\begin{gathered}
V=V_{f}+V_{g} \\
V=m v \\
m_{\text {tot }} v_{\text {avr }}=m_{f} v_{f}+m_{g} v_{g} \\
m_{f}=m_{\text {tot }}-m_{g} \\
m_{\text {tot }} v_{\text {aur }}=\left(m_{\text {tot }}-m_{g}\right) v_{f}+m_{g} v_{g} \\
v_{\text {avr }}=(1-x) v_{f}+x v_{g} \\
v_{f g}=v_{g}-v_{f} \\
v_{\text {avg }}=v_{f}+x v_{f g} \quad x=\frac{v_{\text {avg }}-v_{f}}{v_{f g}} \\
u=u_{f}+x u_{f g} \\
h=h_{f}+x h_{f g} \\
S=s_{f}+x s_{f g}
\end{gathered}
$$

Saturated Liquid and Saturated Vapor States

- The properties of saturated liquid and saturated vapor for water are listed in Thermodynamics tables.

Superheated steam table

- In the region to the right of the saturated vapor line and at temperatures above the critical point temperature, a substance exists as superheated vapor.

- Compared to saturated vapor, superheated vapor is characterized by
- Lower pressures ($P>P_{\text {sat }}$ at a given T)
- Higher temperatures ($T>T_{\text {sat }}$ at a given P)
- Higher specific volumes ($v>v_{g}$ at a given P or $\left.T\right)$
- Higher internal energies ($u>u_{g}$ at a given P or T)
- Higher enthalpies ($h>h_{g}$ at a given P or T)

How to Choose the Right Table

- Given the temperature or pressure and one other property from the group v, u, h, and s, the following procedure is used.
- For example if the pressure and specific volume are specified, three questions are asked: For the given pressure,

$$
\begin{aligned}
& \text { Is } v<v_{f} \text { ? } \\
& \text { Is } v_{f}<v<v_{t} \text { ? } \\
& \text { Is } v_{s}<v \text { ? }
\end{aligned}
$$

- If the answer to the first question is yes, the state is in the compressed liquid region.
- If the answer to the second question is yes, the state is in the saturation region.
- If the answer to the third question is yes, the state is in the superheated region

Compressed liquid table

- Compressed liquid tables are not as commonly available this is because the compressed liquid properties depend on temperature much more strongly than they do on pressure.
- In the absence of compressed liquid data, a general approximation is to treat compressed liquid as saturated liquid at the given temperature.

In general, a compressed liquid is characterized by

- Higher pressures ($P>P_{\text {sat }}$ at a given T)
- Lower temperatures ($T>T_{\text {sat }}$ at a given P)
- Lower specific volumes $\left(v>v_{f}\right.$ at a given P or $\left.T\right)$
- Lower internal energies $\left(u>u_{f}\right.$ at a given P or $\left.T\right)$
- Lower enthalpies $\left(h>h_{f}\right.$ at a given P or $\left.T\right)$

